Year 5 programme of study (statutory requirements) Number and place | Addition and | • Multiplication and

subtraction

subtract whole

numbers with

including using

formal written

more than 4

digits,

methods

(columnar

addition and

subtraction)

•add and

subtract

numbers

 $\bullet \square \square$ use

mentally with

large numbers

increasingly

rounding to

check answers

to calculations

and determine,

a problem,

levels of

accuracy

• □ □ solve

addition and

subtraction

multi-step

contexts,

and why

problems in

deciding which

operations and

methods to use

in the context of

add and

Number and place value • □read, write, order and compare numbers to at least 1 000 000 and determine the value of each digit • □ □ count forwards or backwards in steps of powers of 10 for any given number up •1 000 000 • □ □ interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero • □ □ round any number up to •1 000 000 to the nearest 10, 100. 1000, 10 000 and 100 000 • □ □ solve number problems and practical problems that involve all of the above • □ □ read Roman numerals to 1000 (M) and recognise years written in Roman numerals

•Multiplication and division

- •identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- •□□know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- •□□establish whether a number up to 100 is prime and recall prime numbers up to 19
- •□□multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- •□□multiply and divide numbers mentally drawing upon known facts
- •divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context •multiply and divide whole numbers and
- •multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
- •recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- •solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes
- •solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- •solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Fractions (including decimals and percentages)

- •compare and order fractions whose denominators are all multiples of the same number
- •□□identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- □ □ recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $\frac{2}{5} + \frac{4}{5} = \frac{6}{5} = \frac{1}{5}$]
- •□□add and subtract fractions with the same denominator and multiples of the same number
- \(\sum \) multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- \square read and write decimal numbers as fractions [for example, $0.71 = \frac{71}{100}$]
- •□□recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- \square round decimals with two decimal places to the nearest whole number and to one decimal place
- •□□read, write, order and compare numbers with up to three decimal places
- •□ solve problems involving number up to three decimal places
- •□□recognise the per cent symbol (%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100, and as a decimal
- \square solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{4}{5}$, and those with a denominator of a multiple

of 10 or 25

Measurement

- •convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)
- •□□understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints
- •□□measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres
- •□□calculate and compare the area of rectangles (including squares) using standard units, square centimetres (cm²) and
- •square metres (m²) and estimate the area of irregular shapes
- •□□estimate volume [for example, using 1 cm³ blocks to build cuboids(including cubes)] and capacity[for example, using water]
- •□□solve problems involving converting between units of time
- •□□use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation including scaling

Geometry: properties of shapes

- •identify 3-D shapes including cubes and other cuboids, from 2-D representations
- •□ know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles
- •□□draw given angles, and measure them in degrees (°)
- $\bullet \square$ \square identify:
- •angles at a point and one whole turn (total 360°) •angles at a point on
- a straight line and ½
 a turn (total 180°)
- •other multiples of 90°
- •use the properties of rectangles to deduce related facts and find missing lengths and angles
- •distinguish between regular and irregular polygons based on reasoning about equal sides and angles

Geometry: position and direction

Statistics

comparison,

•solve

sum and

difference

information

line graph

read and

interpret

tables,

including

timetables

presented in a

• □ □ complete,

information in

problems using

•identify,
describe and
represent the
position of a
shape
following a
reflection or
translation,
using the
appropriate
language, and
know that the
shape has not

changed

Y5 notes and guidance (non-statutory)

Number and	Addition and	Multiplication and division	Fractions (including decimals and percentages)	Measurement	Geometry:	Geometry:
place value	subtraction	•Pupils practise and extend their use	•Pupils should be taught throughout that percentages, decimals	•Pupils use their	properties of	position
Pupils identify	•Pupils	of the formal written methods of	and fractions are different ways of expressing proportions.	knowledge of place	shapes	and
the place value	practise using	short multiplication and short	They extend their knowledge of fractions to thousandths and	value and	Pupils become	direction
n large whole	the formal	division (see Mathematics Appendix	connect to decimals and measures.	multiplication and	accurate in	Pupils
numbers.	written	1). They apply all the multiplication	•Pupils connect equivalent fractions > 1 that simplify to	division to convert	drawing lines with	recognise
They continue	methods of	tables and related division facts	integers with division and other fractions > 1 to division with	between standard units.	a ruler to the	and use
to use number in	columnar	frequently, commit them to memory	remainders, using the number line and other models, and hence	 Pupils calculate the 	nearest millimetre,	reflection
context,	addition and	and use them confidently to make	move from these to improper and mixed fractions.	perimeter of rectangles	and measuring	and
ncluding	subtraction	larger calculations.	•Pupils connect multiplication by a fraction to using fractions as	and related composite	with a protractor.	translation
neasurement.	with	•They use and understand the terms	operators (fractions of), and to division, building on work from	shapes, including	They use	in a variety
rupils extend	increasingly	factor, multiple and prime, square	previous years. This relates to scaling by simple fractions,	using the relations of	conventional	of diagrams,
and apply their	large numbers	and cube numbers.	including fractions > 1.	perimeter or area to	markings for	including
inderstanding of	to aid fluency	 Pupils interpret non-integer answers 	Pupils practise adding and subtracting fractions to become	find unknown lengths.	parallel lines and	continuing
he number	(see	to division by expressing results in	fluent through a variety of increasingly complex problems.	Missing measures	right angles.	to use a 2-D
ystem to the	Mathematics	different ways according to the	They extend their understanding of adding and subtracting	questions such as these	•Pupils use the	grid and
decimal numbers	Appendix 1).	context, including with remainders,	fractions to calculations that exceed 1 as a mixed number.	can be expressed	term diagonal and	coordinates
and fractions	•They practise	as fractions, as decimals or by	Pupils continue to practise counting forwards and backwards	algebraically, for	make conjectures	in the first
hat they have	mental	rounding (for example, $98 \div 4 = 98/4$	in simple fractions.	example $4 + 2b = 20$	about the angles	quadrant.
net so far.	calculations	$= 24 \text{ r } 2 = 241/2 = 24.5 \approx 25$).	Pupils continue to develop their understanding of fractions as	for a rectangle of sides	formed between	Reflection
They should	with	•Pupils use multiplication and	numbers, measures and operators by finding fractions of	2 cm and b cm and	sides, and between	should be in
recognise and	increasingly	division as inverses to support the	numbers and quantities.	perimeter of 20cm.	diagonals and	lines that are
lescribe linear	large numbers	introduction of ratio in year 6, for	Pupils extend counting from year 4, using decimals and	 Pupils calculate the 	parallel sides, and	parallel to
number	to aid fluency	example, by multiplying and dividing	fractions including bridging zero, for example on a number line.	area from scale	other properties of	the axes.
equences (for	(for example,	by powers of 10 in scale drawings or	 Pupils say, read and write decimal fractions and related tenths, 	drawings using given	quadrilaterals, for	
example, 3 , $3\frac{1}{2}$,	12462 - 2300	by multiplying and dividing by	hundredths and thousandths accurately and are confident in	measurements.	example using	
4, 4 1/2),	= 10 162).	powers of a 1000 in converting	checking the reasonableness of their answers to problems.	•Pupils use all four	dynamic geometry	
ncluding those		between units such as kilometres and	•They mentally add and subtract tenths, and one-digit whole	operations in problems	ICT tools.	
nvolving		metres.	numbers and tenths.	involving time and	•Pupils use angle	
fractions and		•Distributivity can be expressed as		money, including	sum facts and	
decimals, and		a(b+c) = ab + ac.	•They practise adding and subtracting decimals, including a	conversions (for	other properties to	
find the term-to-		•They understand the terms factor,	mix of whole numbers and decimals, decimals with different	example, days to	make deductions	
term rule in		multiple and prime, square and cube	numbers of decimal places, and complements of 1 (for example,	weeks, expressing the	about missing	
words (for		numbers and use them to construct	0.83 + 0.17 = 1).	answer as weeks and	angles and relate	
example, add		equivalence statements (for example,	•Pupils should go beyond the measurement and money models	days).	these to missing	
½).		$4 \times 35 = 2 \times 2 \times 35; 3 \times 270 = 3 \times 3 \times 35$	of decimals, for example, by solving puzzles involving		number problems.	
		$9 \times 10 = 92 \times 10$).	decimals.		1	
		Pupils use and explain the equals	•Pupils should make connections between percentages,			
		sign to indicate equivalence,	fractions and decimals (for example, 100% represents a whole			
		including in missing number	quantity and 1% is 1/100, 50% is 50/100, 25% is 25/100) and			
			relate this to finding 'fractions of'.			
		problems (for example, $13 + 24 = 12$	3			

Statistics

their work

coordinates and scales to

interpretatio

•They begin to decide

representatio

ns of data are most

appropriate

and why.

n of time graphs.

which

on

their

Pupils connect